Scattered Data Interpolation Using an Alternate Differential Equation Interpolant by Gonzalo

نویسنده

  • Gonzalo A. Ramos
چکیده

Scattered Data Interpolation Using an Alternate Differential Equation Interpolant Gonzalo A. Ramos Master of Science Graduate Department of Computer Science University of Toronto 2001 We investigate the performance of DEI, an approach [9] that computes off-mesh approximations of PDE solutions, and can also be used as a technique for scattered data interpolation. We compare the new approach with two methods from the collection of ACM algorithms: Algorithms 752, and 790. For the general case of unstructured meshes, we found it necessary to modify the original DEI. The resulting method, ADEI, adjusts the parameter of the interpolant, obtaining better performance. Finally, we measure ADEI’s performance using different sets of scattered data and test functions. The results show that ADEI is better if not comparable to the best of the available scattered data interpolation techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation of Surfaces over Scattered Data

We investigate the performance of DEI, an approach [2] that computes off-mesh approximations of PDE solutions, and can also be used as a technique for scattered data interpolation and surface representation. For the general case of unstructured meshes, we found it necessary to modify the original DEI. The resulting method, ADEI, adjusts the parameter of the interpolant, obtaining better perform...

متن کامل

Interpolation of Lipschitz functions

This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. Th...

متن کامل

Favard’s Interpolation Problem in One or More Variables

Given scattered data on the real line, Favard [4] constructed an interpolant which depends linearly and locally on the data and whose nth derivative is locally bounded by the nth divided differences of the data times a constant depending only on n. It is shown that the (n − 1)th derivative of Favard’s interpolant can be likewise bounded by divided differences, and that one can bound at best two...

متن کامل

Range restricted positivity-preserving scattered data interpolation

The construction of a range restricted bivariate C ( or G ) interpolant to scattered data is considered in which the interpolant is positive everywhere if the original data are positive. This study is motivated by earlier work in which sufficient conditions are derived on Bézier points in order to ensure that surfaces comprising cubic Bézier triangular patches are always positive and satisfy C ...

متن کامل

SOLVING INTEGRO-DIFFERENTIAL EQUATION BY USING B- SPLINE INTERPOLATION

In this paper a numerical technique based on the B-spline method is presented for the solution of Fredholm integro-differential equations. To illustrate the efficiency of the method some examples are introduced and the results are compared with the exact solution.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001